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1
NUMBER OF CLUSTERS ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of 35 U.S.C.
§119(e) to U.S. Provisional Patent Application No. 61/844,
344 filed on Jul. 9, 2013, the entire contents of which are
hereby incorporated by reference.

BACKGROUND

Given a data matrix X of size n by p, clustering assigns the
observations (rows of X) to clusters, or groups based on some
or all of the data variables (columns of X). Clustering is a
cornerstone of business intelligence, with wide-ranging
applications such as market segmentation and fraud detec-
tion.

SUMMARY

In an example embodiment, a method of determining a
number of clusters for a dataset is provided. Data to cluster is
received. A number of clusters to create is defined. Centroid
locations for the defined number of clusters are determined
using a clustering algorithm and the received data to define
clusters. Boundaries for each of the defined clusters are
defined. A reference distribution that includes a plurality of
data points is created. The plurality of data points are within
the defined boundary of at least one cluster of the defined
clusters. Second centroid locations for the defined number of
clusters are determined using the clustering algorithm and the
created reference distribution to define second clusters. A gap
statistic for the defined number of clusters is computed based
on a comparison between a first residual sum of squares
computed for the defined clusters and a second residual sum
of squares computed for the defined second clusters. The
processing is repeated for a next number of clusters to create
as the defined number of clusters. An estimated best number
of clusters for the received data is determined by comparing
the gap statistic computed for each iteration.

In another example embodiment, a computer-readable
medium is provided having stored thereon computer-read-
able instructions that, when executed by a computing device,
cause the computing device to perform the method of deter-
mining a number of clusters for a dataset.

In yet another example embodiment, a computing device is
provided. The system includes, but is not limited to, a pro-
cessor and a computer-readable medium operably coupled to
the processor. The computer-readable medium has instruc-
tions stored thereon that, when executed by the computing
device, cause the computing device to perform the method of
determining a number of clusters for a dataset.

In still another example embodiment, a system is provided.
The system includes, but is not limited to, a first computing
device comprising a first processor and a first computer-
readable medium and a second computing device comprising
a second processor and a second computer-readable medium.
The first computer-readable medium is operably coupled to
the first processor and has first computer-readable instruc-
tions stored thereon that, when executed by the first processor,
cause the first computing device to perform a first portion of
the method of determining a number of clusters for a dataset.
The second computer-readable medium is operably coupled
to the second processor and has second computer-readable
instructions stored thereon that, when executed by the second
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processor, cause the second computing device to perform a
second portion of the method of determining a number of
clusters for a dataset.

Other principal features of the disclosed subject matter will
become apparent to those skilled in the art upon review of the
following drawings, the detailed description, and the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Tustrative embodiments of the disclosed subject matter
will hereafter be described referring to the accompanying
drawings, wherein like numerals denote like elements.

FIG. 1 depicts a block diagram of a data access device in
accordance with an illustrative embodiment.

FIG. 2 depicts a flow diagram illustrating examples of
operations performed by the data access device of FIG. 1 in
accordance with an illustrative embodiment.

FIG. 3 depicts a block diagram of a cluster determination
system in accordance with an illustrative embodiment.

FIG. 4 depicts a block diagram of a grid control device of
the cluster determination system of FIG. 3 in accordance with
an illustrative embodiment.

FIG. 5 depicts a flow diagram illustrating examples of
operations performed by the grid control device of FIG. 4 in
accordance with an illustrative embodiment.

FIG. 6 depicts a block diagram of a grid node device of the
cluster determination system of FIG. 3 in accordance with an
illustrative embodiment.

FIGS. 7a and 7b depict flow diagrams illustrating
examples of operations performed by the grid node device of
FIG. 6 in accordance with an illustrative embodiment.

FIG. 8 depicts an example dataset containing three elon-
gated clusters.

FIG. 9 depicts creation of three example reference distri-
butions created for the example dataset of FIG. 8.

FIG. 10 depicts creation of six example reference distribu-
tions created for the example dataset of FIG. 8.

FIG. 11 depicts creation of fifteen example reference dis-
tributions created for the example dataset of FIG. 8.

FIG. 12 is a graph showing a plot of a gap statistic value
computed as a function of a number of clusters for the
example dataset of FIG. 8.

DETAILED DESCRIPTION

Referring to FIG. 1, a block diagram of'a data access device
100 is shown in accordance with an illustrative embodiment.
Data access device 100 may include an input interface 102, an
output interface 104, a communication interface 106, a com-
puter-readable medium 108, a processor 110, a clustering
application 122, and a data matrix 124. Fewer, different,
and/or additional components may be incorporated into data
access device 100.

Input interface 102 provides an interface for receiving
information from the user for entry into data access device
100 as understood by those skilled in the art. Input interface
102 may interface with various input technologies including,
but not limited to, akeyboard 112, amouse 114, a display 116,
atrack ball, a keypad, a microphone, one or more buttons, etc.
to allow the user to enter information into data access device
100 or to make selections presented in a user interface dis-
played on the display. The same interface may support both
input interface 102 and output interface 104. For example, a
display comprising a touch screen both allows user input and
presents output to the user. Data access device 100 may have
one or more input interfaces that use the same or a different
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input interface technology. The input interface technology
further may be accessible by data access device 100 through
communication interface 106.

Output interface 104 provides an interface for outputting
information for review by a user of data access device 100.
For example, output interface 104 may interface with various
output technologies including, but not limited to, display 116,
a speaker 118, a printer 120, etc. Data access device 100 may
have one or more output interfaces that use the same or a
different output interface technology. The output interface
technology further may be accessible by data access device
100 through communication interface 106.

Communication interface 106 provides an interface for
receiving and transmitting data between devices using vari-
ous protocols, transmission technologies, and media as
understood by those skilled in the art. Communication inter-
face 106 may support communication using various transmis-
sion media that may be wired and/or wireless. Data access
device 100 may have one or more communication interfaces
that use the same or a different communication interface
technology. For example, data access device 100 may support
communication using an Ethernet port, a Bluetooth antenna,
a telephone jack, a USB port, etc. Data and messages may be
transferred between data access device 100 and a grid control
device 130 and/or grid systems 132 using communication
interface 106.

Computer-readable medium 108 is an electronic holding
place or storage for information so the information can be
accessed by processor 110 as understood by those skilled in
the art. Computer-readable medium 108 can include, but is
not limited to, any type of random access memory (RAM),
any type of read only memory (ROM), any type of flash
memory, etc. such as magnetic storage devices (e.g., hard
disk, floppy disk, magnetic strips, . . . ), optical disks (e.g.,
compact disc (CD), digital versatile disc (DVD), . . .), smart
cards, flash memory devices, etc. Data access device 100 may
have one or more computer-readable media that use the same
or a different memory media technology. Data access device
100 also may have one or more drives that support the loading
of a memory media such as a CD, DVD, an external hard
drive, etc. One or more external hard drives further may be
connected to data access device 100 using communication
interface 106.

Processor 110 executes instructions as understood by those
skilled in the art. The instructions may be carried out by a
special purpose computer, logic circuits, or hardware circuits.
Processor 110 may be implemented in hardware and/or firm-
ware. Processor 110 executes an instruction, meaning it per-
forms/controls the operations called for by that instruction.
The term “execution” is the process of running an application
or the carrying out of the operation called for by an instruc-
tion. The instructions may be written using one or more
programming language, scripting language, assembly lan-
guage, etc. Processor 110 operably couples with input inter-
face 102, with output interface 104, with communication
interface 106, and with computer-readable medium 108 to
receive, to send, and to process information. Processor 110
may retrieve a set of instructions from a permanent memory
device and copy the instructions in an executable form to a
temporary memory device that is generally some form of
RAM. Data access device 100 may include a plurality of
processors that use the same or a different processing tech-
nology.

Clustering application 122 performs operations associated
with clustering data stored in data matrix 124. Some or all of
the operations described herein may be embodied in cluster-
ing application 122. The operations may be implemented
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using hardware, firmware, software, or any combination of
these methods. Referring to the example embodiment of FI1G.
1, clustering application 122 is implemented in software
(comprised of computer-readable and/or computer-execut-
able instructions) stored in computer-readable medium 108
and accessible by processor 110 for execution of the instruc-
tions that embody the operations of clustering application
122. Clustering application 122 may be written using one or
more programming languages, assembly languages, scripting
languages, etc.

Clustering application 122 may be implemented as a Web
application. For example, clustering application 122 may be
configured to receive hypertext transport protocol (HTTP)
responses and to send HTTP requests. The HTTP responses
may include web pages such as hypertext markup language
(HTML) documents and linked objects generated in response
to the HTTP requests. Each web page may be identified by a
uniform resource locator (URL) that includes the location or
address of the computing device that contains the resource to
be accessed in addition to the location of the resource on that
computing device. The type of file or resource depends on the
Internet application protocol such as the file transfer protocol,
HTTP, H.323, etc. The file accessed may be a simple text file,
an image file, an audio file, a video file, an executable, a
common gateway interface application, a Java applet, an
extensible markup language (XML) file, or any other type of
file supported by HTTP.

Data matrix 124 includes a plurality of rows and one or
more columns. The rows of data matrix 124 may be referred
to as observations and the columns associated with an obser-
vation may be referred to as data points, representing vari-
ables, for the observation. Of course, in an alternative
embodiment, data matrix 124 may be transposed.

The data stored in data matrix 124 may include any type of
content represented in any computer-readable format such as
binary, alphanumeric, numeric, string, markup language, etc.
The content may include textual information, graphical infor-
mation, image information, audio information, numeric
information, etc. that further may be encoded using various
encoding techniques as understood by a person of skill in the
art. Data matrix 124 may be stored in computer-readable
medium 108 or on one or more other computing devices and
accessed using communication interface 106. For example,
data matrix 124 may be stored in a cube distributed across a
grid of computers as understood by a person of skill in the art.
Data matrix 124 may be stored using various formats as
known to those skilled in the art including a file system, a
relational database, a system of tables, a structured query
language database, etc.

Referring to FIG. 2, example operations associated with
clustering application 122 are described. Additional, fewer,
or different operations may be performed depending on the
embodiment. The order of presentation of the operations of
FIG. 2 is not intended to be limiting. Although some of the
operational flows are presented in sequence, the various
operations may be performed in various repetitions, concur-
rently (in parallel, for example, using threads), and/or in other
orders than those that are illustrated. For example, a user may
execute clustering application 122, which causes presentation
ofa first user interface window, which may include a plurality
of menus and selectors such as drop down menus, buttons,
text boxes, hyperlinks, etc. associated with clustering appli-
cation 122 as understood by a person of skill in the art. As
used herein, an indicator indicates one or more user selections
from a user interface, one or more data entries into a data field
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of the user interface, one or more data items read from com-
puter-readable medium 108 or otherwise defined with one or
more default values, etc.

In an operation 200, a first indicator of data to cluster is
received. For example, the first indicator indicates a location
of data matrix 124. As an example, the first indicator may be
received by clustering application 222 after selection from a
user interface window or after entry by a user into a user
interface window. The first indicator may further indicate that
only a portion of the data stored in data matrix 124 be clus-
tered. For example, in a large dataset only a subset of the
observations may be used. First indicator may indicate a
number of observations to include, a percentage of observa-
tions of the entire dataset to include, etc. A subset may be
created from data matrix 124 by sampling. An example sam-
pling algorithm is uniform sampling. Other random sampling
algorithms may be used. Additionally, only a subset of the
data points (columns) for each observation may be used to
determine the clusters. The first indicator also may indicate a
subset of the columns (variables) to use to determine the
clusters. In an alternative embodiment, the data to cluster may
not be selectable. For example, a most recently created data
set may be used automatically.

In an operation 202, a second indicator of a range of num-
bers of clusters to evaluate is received. For example, the
second indicator indicates a minimum number of clusters to
evaluate and a maximum number of clusters to evaluate. The
second indicator may further indicate an increment that is
used to define an incremental value for incrementing from the
minimum to the maximum number of clusters or vice versa.
Of course, the incremental value may be or default to one. The
second indicator may be received by clustering application
122 after selection from a user interface window or after entry
by a user into a user interface window. Default values for the
range of numbers of clusters to evaluate may further be
stored, for example, in computer-readable medium 108. In an
alternative embodiment, the range of numbers of clusters to
evaluate may not be selectable.

In an operation 204, a third indicator of a number of Monte
Carlo iterations to execute for a reference dataset is received.
The third indicator may be received by clustering application
222 after a selection from a user interface window or after
entry by a user into a user interface window, for example. A
default value for the number of Monte Carlo iterations to
execute for generating reference datasets may further be
stored, for example, in computer-readable medium 108. In an
alternative embodiment, the number of Monte Carlo itera-
tions may not be selectable.

In an operation 206, a fourth indicator of a clustering
algorithm to execute to cluster the data and the reference
dataset is received. For example, the fourth indicator indi-
cates a name of a clustering algorithm. The fourth indicator
may be received by clustering application 122 after selection
from a user interface window or after entry by a user into a
user interface window. A default value for the clustering
algorithm to execute may further be stored, for example, in
computer-readable medium 108. In an alternative embodi-
ment, the clustering algorithm may not be selectable.

In an operation 208, a number of clusters is initialized. For
example, the number of clusters may be initialized to the
minimum number of clusters to evaluate or the maximum
number of clusters to evaluate defined in operation 202.

In an operation 210, the clustering algorithm indicated in
operation 206 is executed to cluster the data indicated in
operation 200 into the defined number of clusters. The num-
ber of clusters may be defined based on the initialized number
of clusters defined in operation 208 or in an operation 231.
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The executed clustering algorithm may be selected for execu-
tion based on the fourth indicator. The data may be received
from one or more devices through communication interface
106 and/or may be received from storage in computer-read-
able medium 108. Example clustering algorithms include the
k-means algorithm, Ward’s minimum-variance algorithm, a
hierarchical algorithm, a median algorithm, McQuitty’s simi-
larity analysis algorithm, or other algorithms based on mini-
mizing the cluster residual sum of squares. The clustering
algorithm performs a cluster analysis on the basis of distances
that are computed from one or more variables. The data points
are divided into clusters such that each observation belongs to
a single cluster. Additionally, the clustering algorithm defines
a centroid for each cluster.

In an operation 212, a first residual sum of squares is
computed for the defined clusters as W,=2,_ *Z,_ ", —c |,
where k is the defined number of clusters, n; is a number of
data points in cluster j of the defined clusters, x, ;is an ith data
point in cluster j of the defined clusters, and c; is a centroid
location of cluster j of the defined clusters.

In an operation 214, a boundary is defined for each of the
clusters defined in operation 210. For example, a minimum
value and a maximum value are defined for each dimension of
each cluster to define a possibly multi-dimensional box
depending on a number of the one or more variables defined
in operation 200.

Optionally, the data to cluster may be transformed before
defining the boundaries for each cluster. For example, prin-
cipal component analysis (PCA) may be performed on the
data in each cluster to convert the observations in each cluster
to linearly uncorrelated variables called principal compo-
nents. PCA may refer to a multivariate technique for exam-
ining relationships among several variables. Each principal
component can be a linear combination of the original vari-
ables with coefficients equal to the eigenvectors of the corre-
lation or covariance matrix. The eigenvectors are orthogonal
so the principal components represent jointly perpendicular
directions through the space of the original variables. An
eigenvector and an eigenvalue may be determined for each
dimension of each of the defined clusters based on the prin-
cipal components analysis. To perform PCA, the raw data
may be used or the raw data may be converted to another form
such as a covariance matrix as understood by a person of skill
in the art.

A length for each dimension of each cluster is determined
as a proportion of the determined eigenvalue for the respec-
tive dimension. For illustration, the proportion of the deter-
mined eigenvalue is 0.75-1.0. The boundaries of each cluster
can be defined as a box with a center of the box as a centroid
location of the respective cluster in the transformed space. A
first boundary point for each dimension can be defined as the
center of the box plus the determined length of the respective
dimension aligned with the determined eigenvector of the
respective dimension. A second boundary point for each
dimension is defined as the center of the box minus the deter-
mined length of the respective dimension aligned with the
eigenvector of the respective dimension.

In an operation 216, a reference distribution is created. The
reference distribution includes a new plurality of data points.
The new plurality of data points are created within the defined
boundary of at least one cluster of the defined clusters. The
new data points may be selected based on a uniform distribu-
tion within the boundary of each defined cluster. For example,
a first plurality of data points are created within the boundary
defined for a first cluster of the defined clusters, a second
plurality of data points are created within the boundary
defined for a second cluster of the defined clusters, a third
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plurality of data points are created within the boundary
defined for a third cluster of the defined clusters, and so on up
to the number of clusters created.

In an illustrative embodiment, n,*, a number of data points
in cluster j of the reference distribution is selected based on n,,
the number of data points in cluster j of the clusters defined in
operation 210. For example, n* may be proportional to n,.
The proportion may be less than one, equal to one, or greater
than one. In another illustrative embodiment, n,* is a prede-
termined number of data points regardless of the value of n,.
The reference distribution data may be created and stored on
one or more devices and/or on computer-readable medium
108.

FIGS. 8 to 11 illustrate the process of creating a reference
distribution in operation 216. Referring to FIG. 8, a sample
dataset selected for clustering is shown. The sample dataset
includes a first plurality of points 800, a second plurality of
points 802, and a third plurality of points 804 that generally
form three, visually distinct clusters.

Referring to FIG. 9, three clusters were created for the
sample dataset in FIG. 8 using a k-means clustering algo-
rithm. Principal components analysis was performed on each
of the created clusters and the boundaries were defined for
each cluster based on the eigenvector and the eigenvalue
determined for each dimension of each of the three clusters. A
reference distribution was created by defining data points
within the boundaries of each of the cluster boundaries. The
reference distribution includes a first cluster distribution 900,
a second cluster distribution 902, and a third cluster distribu-
tion 904.

Referring to FIG. 10, six clusters were created for the
sample dataset in FIG. 8 using a k-means clustering algo-
rithm. Principal components analysis was performed on each
of the created clusters and the boundaries were defined for
each cluster based on the eigenvector and the eigenvalue
determined for each dimension of each of the six clusters. A
reference distribution was created by defining data points
within the boundaries of each of the clusters. The reference
distribution includes a first cluster distribution 1000, a second
cluster distribution 1002, a third cluster distribution 1004, a
fourth cluster distribution 1006, a fifth cluster distribution
1008, and a sixth cluster distribution 1010.

Referring to FIG. 11, fifteen clusters were created for the
sample dataset in FIG. 8 using a k-means clustering algo-
rithm. Principal components analysis was performed on each
of the created clusters and the boundaries were defined for
each cluster based on the eigenvector and the eigenvalue
determined for each dimension of each of the fifteen clusters.
A reference distribution was created by defining data points
within the boundaries of each of the clusters. The reference
distribution includes a first cluster distribution 1100, a second
cluster distribution 1102, a third cluster distribution 1104, a
fourth cluster distribution 1106, a fifth cluster distribution
1108, a sixth cluster distribution 1110, a seventh cluster dis-
tribution 1112, an eighth cluster distribution 1114, a ninth
cluster distribution 1116, a tenth cluster distribution 1118, an
eleventh cluster distribution 1120, a twelfth cluster distribu-
tion 1122, a thirteenth cluster distribution 1124, a fourteenth
cluster distribution 1126, and a fifteenth cluster distribution
1128.

With continuing reference to FIG. 2, in an operation 218,
the clustering algorithm indicated in operation 206 is
executed to cluster the reference distribution created in opera-
tion 206 into the defined number of clusters. The data may be
received from one or more devices through communication
interface 106 and/or may be received from storage in com-
puter-readable medium 206. If the boundaries defined in
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operation 214 were defined after transforming the data, the
reference distribution data is transformed back to the original
space before executing the clustering algorithm.

In an operation 220, a second residual sum of squares is
computed for the clusters defined using the reference distri-
bution created in operation 218 (second clusters) as
W, *=2,_ "2, ¥, *~c;*|, where b is an index for a
Monte Carlo iteration number, n;* is the number of data
points in cluster j of the defined second clusters, x, ;* is the ith
observation in cluster j of the defined second clusters, and ¢;*
is the centroid location of cluster j of the defined second
clusters.

In an operation 222, a determination is made concerning
whether or not another Monte Carlo iteration is to be
executed. If another Monte Carlo iteration is to be executed,
processing continues in an operation 223. If the number of
Monte Carlo iterations indicated by the third indicator has
been executed, processing continues in an operation 224. In
an alternative embodiment, instead of pre-determining a
number of Monte Carlo iterations as the number of repetitions
of operations 216, 218, and 220, an evaluation may be made
by auser to determine when the results appear satisfactory or
stable based ona display of aline or curve showing an average
or a dispersion of the number of clusters.

Inoperation 223, a next random seed is selected for the next
Monte Carlo iteration. Processing continues in operation 216
to create another reference distribution. Because the data
points included in the reference distribution are selected
based on sampling within the boundary of each defined clus-
ter, changing the random seed changes the data points
included in the next reference distribution. If data access
device 100 is multi-threaded, operations 216, 218, and 220
may be performed concurrently.

In operation 224, an averaged residual sum of squares is
computed for the Monte Carlo iterations as

w; ! BE 1 3
k=3 0
B =1 =1

b=1 /

" 2
Il = <5l ]

Wi = E;mg(wkb),

where B is the number of Monte Carlo iterations or the num-
ber of the plurality of times that operation 216 is repeated.

In an operation 226, a gap statistic is computed for the
defined number of clusters as gap(k)=(W,*)-log(W,). In
operation 226, a standard deviation is also defined for the
defined number of clusters as

B 172

1
sd(k) = EZ (log(Wy,) — W;)?

b=1

The gap statistic is not a constant when k=1. To avoid this, the
gap statistic may be normalized. For example, the gap statistic
may be normalized as
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wy W,
Normgap(k) = we ™ log(W1 ),
i

which equals zero for k=1. As another example, the gap
statistic may be normalized as

(W) —log(Wy)

Normgapth) = Hwey ~TogWeo)

where E(.) is the empirical expectation. As yet another
example, the gap statistic may be normalized as Normgap(k)
=W,/ *)-log(W,)-E(W,/*)-log(W,)). As still another
example, the gap statistic may be normalized as

(W) —log(We) — E((Wy) — log( W)
std((Wy) — log(W,)) ’

Normgap(k) =

where std(.) is the empirical standard deviation.

In an operation 228, the computed gap statistic and the
computed standard deviation are stored in association with
the defined number of clusters. For example, the computed
gap statistic and the computed standard deviation are stored in
computer-readable medium 108 indexed by the defined num-
ber of clusters.

In an operation 230, a determination is made concerning
whether or not another iteration is to be executed with a next
number of clusters. For example, the determination may com-
pare the current defined number of clusters to the minimum
number of clusters or the maximum number of clusters to
determine if each iteration has been executed as understood
by a person of skill in the art. If another iteration is to be
executed, processing continues in an operation 231. If each of
the iterations has been executed, processing continues in an
operation 232.

In operation 231, a next number of clusters is defined by
incrementing or decrementing a counter of the number of
clusters from the minimum number of clusters or the maxi-
mum number of clusters, respectively. Processing continues
in operation 210 to execute the clustering algorithm with the
next number of clusters as the defined number of clusters. If
data access device 100 is multi-threaded, operations 210-231
may be performed concurrently.

In operation 232, an estimated best number of clusters for
the received data is selected by comparing the gap statistic
computed for each iteration of operation 226. Referring to
FIG. 12, a plot of a gap statistic value computed as a function
of a number of clusters for the example dataset of FIG. 8 is
shown. A first local maxima for the gap statistic is indicated at
a first data point 1200. A second local maxima for the gap
statistic is indicated at a second data point 1202. A third local
maxima for the gap statistic is indicated at a third data point
1204. First data point 1200 also has a maximum value for the
computed gap statistic.

In an illustrative embodiment, the estimated best number
of clusters may be selected as the first local maxima for a
number of clusters greater than one. In another illustrative
embodiment, the estimated best number of clusters may be
selected as the local maxima that has a maximum value for the
gap statistic for the number of clusters greater than one. Of
course, if the gap statistic is normalized, the gap statistic for
k=1 is not a local maxima. In the illustrative embodiment
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shown in FIG. 8, the estimated best number of clusters is three
clusters based on the gap statistic of first data point 1200.

In yet another illustrative embodiment, the estimated best
number of clusters may be selected as the defined number of
clusters associated with a minimum defined number of clus-
ters for which the computed gap statistic for that cluster is
greater than the determined error gap of a subsequent cluster.
The error gap is the difference between the computed gap
statistic and the computed standard deviation as err(k)=gap
(k)-sd(k).

In still another illustrative embodiment, a first number of
clusters may be determined as the first local maxima for a
number of clusters greater than one; a second number of
clusters may be determined as the local maxima that has a
maximum value for the gap statistic for the number of clusters
greater than one; and a third number of clusters may be
determined as the defined number of clusters associated with
a minimum defined number of clusters for which the com-
puted gap statistic for that cluster is greater than the deter-
mined error gap of the subsequent cluster. The estimated best
number of clusters may be selected as the determined first
number of clusters unless the determined second number of
clusters equals the determined third number of clusters in
which case the estimated best number of clusters is deter-
mined as the determined second number of clusters. Other
rules for selecting among the first number of clusters, the
second number of clusters, and third number of clusters may
be defined.

In some embodiments, these techniques can produce auto-
matically classifiable results. For example, a business practi-
tioner can pick the best number from all three methods pro-
vided

Referring to FIG. 3, a block diagram of a cluster determi-
nation system 300 is shown in accordance with an illustrative
embodiment. In an illustrative embodiment, cluster determi-
nation system 300 may include grid systems 132, data access
systems 302, grid control device 130, and a network 301. Grid
systems 132 store a cube of data. Data access systems 302
access data stored in the cube of data distributed to the grid
systems 132. Grid control device 130 coordinates and con-
trols access by data access systems 302 to the data stored by
the grid systems 132. One or more components of cluster
determination system 300 may support multithreading, as
understood by a person of skill in the art.

The components of cluster determination system 300 may
be located in a single room or adjacent rooms, in a single
facility, and/or may be distributed geographically from one
another. Each of grid systems 132, data access systems 302,
and grid control device 130 may be composed of one or more
discrete devices.

Network 301 may include one or more networks of the
same or different types. Network 301 can be any type of wired
and/or wireless public or private network including a cellular
network, a local area network, a wide area network such as the
Internet, etc. Network 301 further may comprise sub-net-
works and consist of any number of devices.

Data access systems 302 can include any number and type
of computing devices that may be organized into subnets.
Data access device 100 is an example computing device of
data access systems 302. The computing devices of data
access systems 302 send and receive communications
through network 301 to/from another of the one or more
computing devices of data access systems 302, to/from grid
systems 132, and/or to/from grid control device 130. The one
or more computing devices of data access systems 302 may
include computers of any form factor such as a laptop 308, a
desktop 306, a smart phone 304, a personal digital assistant,
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an integrated messaging device, a tablet computer, etc. The
one or more computing devices of data access systems 302
may communicate using various transmission media that may
be wired and/or wireless as understood by those skilled in the
art.

For illustration, FIG. 3 represents grid systems 132 with a
first server computer 310, a second server computer 312, a
third server computer 314, and a fourth server computer 316.
Grid systems 132 can include any number and form factor of
computing devices that may be organized into subnets. The
computing devices of grid systems 132 send and receive
communications through network 301 to/from another of the
one or more computing devices of grid systems 132, to/from
grid control device 130, and/or to/from data access systems
302. The one or more computing devices of grid systems 132
may communicate using various transmission media that may
be wired and/or wireless as understood by those skilled in the
art.

In the illustrative embodiment, grid control device 130 is
represented as a server computing device though grid control
device 130 may include one or more computing devices of
any form factor that may be organized into subnets. Grid
control device 130 sends and receives communications
through network 301 to/from grid systems 132 and/or to/from
data access systems 302. Grid control device 130 may com-
municate using various transmission media that may be wired
and/or wireless as understood by those skilled in the art.

Grid control device 130 and grid systems 132 may be
implemented as a multi-node Hadoop® cluster, as under-
stood by a person of skill in the art. Apache™ Hadoop® is an
open-source software framework for distributed computing.

Referring to FIG. 4, a block diagram of grid control device
130 is shown in accordance with an example embodiment.
Grid control device 130 may include a second input interface
402, a second output interface 404, a second communication
interface 406, a second computer-readable medium 408, a
second processor 410, a grid control application 412, and
second data 414. Fewer, different, and additional components
may be incorporated into grid control device 130.

Second input interface 402 provides the same or similar
functionality as that described with reference to input inter-
face 102 of data access device 100 though referring to grid
control device 130. Second output interface 404 provides the
same or similar functionality as that described with reference
to output interface 104 of data access device 100 though
referring to grid control device 130. Second communication
interface 406 provides the same or similar functionality as
that described with reference to communication interface 106
of data access device 100 though referring to grid control
device 130. Data and messages may be transferred between
grid control device 130 and grid systems 132 and/or data
access systems 302 using second communication interface
406. Second computer-readable medium 408 provides the
same or similar functionality as that described with reference
to computer-readable medium 108 of data access device 100
though referring to grid control device 130. Second processor
410 provides the same or similar functionality as that
described with reference to processor 110 of data access
device 100 though referring to grid control device 130.

Grid control application 412 performs operations associ-
ated with controlling access to the cube of data distributed
across grid systems 132. The cube of data is created by dis-
tributing the data into data subcubes stored at a plurality of
computing devices (grid nodes) of grid systems 132. For
illustration, one or more rows of'the cube of data are stored to
each of the grid systems 132.
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Some or all of the operations described herein may be
embodied in grid control application 412. The operations may
be implemented using hardware, firmware, software, or any
combination of these methods. Referring to the example
embodiment of FIG. 4, grid control application 412 is imple-
mented in software (comprised of computer-readable and/or
computer-executable instructions) stored in second com-
puter-readable medium 408 and accessible by second proces-
sor 422 for execution of the instructions that embody the
operations of grid control application 412. Grid control appli-
cation 412 may be written using one or more programming
languages, assembly languages, scripting languages, etc.
Grid control application 412 may be implemented as a Web
application.

Data 414 comprises dataused by grid control application in
support of clustering data and/or a portion of data matrix 124.

Referring to FIG. 5, example operations associated with
grid control application 412 are described. Additional, fewer,
or different operations may be performed depending on the
embodiment. The order of presentation of the operations of
FIG. 5 is not intended to be limiting. Although some of the
operational flows are presented in sequence, the various
operations may be performed in various repetitions, concur-
rently, and/or in other orders than those that are illustrated.
For example, a user may execute grid control application 412,
which causes presentation of a first user interface window,
which may include a plurality of menus and selectors such as
drop down menus, buttons, text boxes, hyperlinks, etc. asso-
ciated with grid control application 412 as understood by a
person of skill in the art. As further understood by a person of
skill in the art, various operations may be performed in par-
allel, for example, using threads.

Similar to operation 200, in an operation 500, a fifth indi-
cator of data to cluster is received. The fifth indicator may be
received from a user of grid control device 130, from com-
puter-readable medium 408, or from data access device 100
through second communication interface 406. The fifth indi-
cator may be the same or different from the first indicator. For
example, the fifth indicator may be a pointer to a data file;
whereas the first indicator may be a string identifying the data
file name.

Similar to operation 202, in an operation 502, a sixth indi-
cator of a range of numbers of clusters to evaluate is received.
The sixth indicator may be received from a user of grid
control device 130, from computer-readable medium 408, or
from data access device 100 through second communication
interface 406. The sixth indicator may be the same or different
from the second indicator. For example, the sixth indicator
may include two or three numerical values (minimum, maxi-
mum, increment); whereas, the third indicator may be one or
more radio button selection indicators.

Similar to operation 204, in an operation 504, a seventh
indicator of a number of Monte Carlo iterations to execute for
a reference dataset is received. The seventh indicator may be
received from a user of grid control device 130, from com-
puter-readable medium 408, or from data access device 100
through second communication interface 406. The seventh
indicator may be the same or different from the third indica-
tor. For example, the seventh indicator may be a numerical
value; whereas, the third indicator may be a radio button
selection indicator.

Similar to operation 206, in an operation 506, an eighth
indicator of a clustering algorithm to execute to cluster the
data and the reference dataset is received. The eighth indica-
tor may be the same or different from the fourth indicator. For
example, the eighth indicator may be a pointer to a clustering
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algorithm; whereas the first indicator may be a string identi-
fying the clustering algorithm name.

Similar to operation 208, in an operation 508, a number of
clusters is initialized. Similar to operation 210, in an opera-
tion 510, the clustering algorithm indicated in operation 506
is executed to cluster the data indicated in operation 500 into
the defined number of clusters. The number of clusters may be
defined based on the initialized number of clusters in opera-
tion 508 or in an operation 529. Distributed execution of the
clustering algorithm may be performed using grid systems
132.

Similar to operation 212, in an operation 512, a first
residual sum of squares is computed for the defined clusters.
When distributed execution of the clustering algorithm is
performed using grid systems 132, each grid node may com-
pute the first residual sum of squares and send the computed
first residual sum of squares to grid control device 130.

Similar to operation 214, in an operation 514, a boundary is
defined for each of the clusters defined in operation 510.
When the data is transformed after clustering, one or more
nodes of grid systems 132 may be sent the data (i.e., raw data
or covariance matrix) of one cluster and requested to compute
the eigenvectors and eigenvalues for that cluster. The eigen-
vectors and eigenvalues are returned to the grid control device
130.

In an operation 516, a request is sent to one or more grid
nodes of grid system 132 to create a reference distribution. A
reference distribution is created for each Monte Carlo itera-
tion using grid systems 132. Similar to operation 216, each
reference distribution includes a new plurality of data points
created within the defined boundary of at least one cluster of
the defined clusters. The grid control device 130 may send the
eigenvectors and eigenvalues to one or more nodes of grid
systems 132 to generate the reference distributions based on
these values when transformed data is used.

In an operation 518, a request is sent to one or more grid
nodes of grid system 132 to cluster the reference distributions
created in operation 516 into the defined number of clusters.
Ifthe boundaries defined in operation 514 were defined after
transforming the data, the reference distribution data is trans-
formed back to the original space before executing the clus-
tering algorithm.

In an operation 520, residual sums of squares are received
from grid systems 132. The node that clusters the reference
distribution computes a residual sum of squares for the clus-
ters and sends the computed residual sums of squares to the
grid control node 130.

Similar to operation 224, in operation 522, an averaged
residual sum of squares is computed for the Monte Carlo
iterations as

Zk: )
==l

1 B
Wgzgzk,g[

b=1

" 2
Il = <5l ]

or

Wik = E; log(Wpi,),

where B is the number of Monte Carlo iterations.

Similar to operation 226, in an operation 524, a gap statistic
and a standard deviation are computed for the defined number
of clusters.
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Similar to operation 228, in an operation 526, the com-
puted gap statistic and the computed standard deviation are
stored in association with the defined number of clusters. For
example, the computed gap statistic and the computed stan-
dard deviation are stored in second computer-readable
medium 408 and/or in computer-readable medium 108
indexed by the defined number of clusters.

Similar to operation 230, in an operation 528, a determi-
nation is made concerning whether or not another iteration is
to be executed with a next number of clusters. If another
iteration is to be executed, processing continues in an opera-
tion 529. If each of the iterations has been executed, process-
ing continues in an operation 530.

Similar to operation 231, in operation 529, a next number
of clusters is defined. Processing continues in operation 510
to execute the clustering algorithm with the next number of
clusters as the defined number of clusters.

Similar to operation 232, in operation 530, an estimated
best number of clusters for the received data is selected by
comparing the gap statistic computed for each iteration of
operation 524.

In an operation 532, the determined estimated best number
of clusters is sent to the data access device 100.

Distributed execution of the operations of FIG. 5 may be
performed using grid systems 132 in other ways than those
described. For example, grid nodes may be used to perform
various combinations of operations 510 to 528 as understood
by a person of skill in the art.

Referring to FIG. 6, a block diagram of a grid node device
600 is shown in accordance with an illustrative embodiment.
Grid node device 600 is an example computing device of grid
systems 132. Grid node device 600 may include a third input
interface 602, a third output interface 604, a third communi-
cation interface 606, a third computer-readable medium 608,
a third processor 610, a node control application 612, and a
data subcube 614. Fewer, different, and additional compo-
nents may be incorporated into grid node device 600.

Third input interface 602 provides the same or similar
functionality as that described with reference to input inter-
face 102 of data access device 100 though referring to grid
node device 600. Third output interface 604 provides the
same or similar functionality as that described with reference
to output interface 104 of data access device 100 though
referring to grid node device 600. Third communication inter-
face 606 provides the same or similar functionality as that
described with reference to communication interface 106 of
data access device 100 though referring to grid node device
600. Data and messages may be transterred between grid
node device 600 and grid control device 130 and/or the data
access systems 302 using third communication interface 606.
Third computer-readable medium 608 provides the same or
similar functionality as that described with reference to com-
puter-readable medium 108 of data access device 100 though
referring to grid node device 600. Third processor 610 pro-
vides the same or similar functionality as that described with
reference to processor 110 of data access device 100 though
referring to grid node device 600.

Node control application 612 performs operations associ-
ated with controlling access to the data stored in data subcube
614, with creating a reference distribution, and/or with
executing a clustering algorithm on data. Some or all of the
operations described herein may be embodied in node control
application 612. The operations may be implemented using
hardware, firmware, software, or any combination of these
methods. Referring to the example embodiment of FIG. 6,
node control application 612 is implemented in software
(comprised of computer-readable and/or computer-execut-
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able instructions) stored in third computer-readable medium
608 and accessible by third processor 610 for execution of the
instructions that embody the operations of node control appli-
cation 612. Node control application 612 may be written
using one or more programming languages, assembly lan-
guages, scripting languages, etc. Node control application
612 may be implemented as a Web application.

Data subcube 614 stores a portion of a cube of data distrib-
uted across grid systems 132 with each computing device of
the grid systems 132 storing a different portion of the cube of
data. Grid control device 130 further may store a portion of
the cube of data. A cube of data is a multidimensional dataset
that can have any number of dimensions. For illustration, each
cell of the cube holds a value that represents some measure of
a business, such as sales, profits, expenses, budget, forecast,
etc. possibly as a function of product, location, etc.

A user may execute clustering application 122 that inter-
acts with grid control application 412 by requesting that grid
control device 130 cluster a dataset. Grid control application
412 triggers processing by node control application 612
executing at each grid node of the grid systems 132. Of
course, any number of different users may be accessing the
cube of data at any given time.

Various levels of integration between the components of
cluster determination system 300 may be implemented with-
out limitation as understood by a person of skill in the art. For
example, node control application 612 and grid control appli-
cation 412 may be the same or different applications or part of
an integrated, distributed application supporting some or all
of the same or additional types of functionality as described
herein. As another example, clustering application 122 and
grid control application 412 may be the same or different
applications or part of an integrated, distributed application
supporting some or all of the same or additional types of
functionality as described herein.

Referring to FIGS. 7a and 75, example operations associ-
ated with node control application 612 are described. Addi-
tional, fewer, or different operations may be performed
depending on the embodiment. The order of presentation of
the operations of FIGS. 7a and 754 is not intended to be
limiting. Although some of the operational flows are pre-
sented in sequence, the various operations may be performed
in various repetitions, concurrently, and/or in other orders
than those that are illustrated.

The operations of node control application 612 executed at
each node may differ. For example, grid control device 130
may allocate some nodes of grid systems 132 to perform
clustering of the data indicated in operation 510. Grid control
device 130 may allocate the same or different nodes of grid
systems 132 to create the reference distributions indicated in
operation 516. Grid control device 130 may allocate the same
or different nodes of grid systems 132 to perform clustering of
the created reference distributions indicated in operation 518.

Referring to FIG. 7a, in an operation 700, a request to
cluster data stored in data subcube 614 is received. Similar to
operation 210, in an operation 702, the clustering algorithm
indicated is executed to cluster some or all of the data in data
subcube 614 based on information included in the request.
Similar to operation 212, in an operation 704, a residual sum
of squares is computed. In an operation 706, the computed
residual sum of squares is sent to grid control node 130.

Referring to FIG. 75, in an operation 710, a request to
create a reference distribution is received. Similar to opera-
tion 216, in an operation 712, the reference distribution is
created based on boundaries defined in the request and a
number of data points to create for each cluster. Similar to
operation 218, in an operation 714, the clustering algorithm
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indicated is executed to cluster the reference distribution cre-
ated in operation 712 into the defined number of clusters. If
the boundaries defined in the request were defined after trans-
forming the data, the reference distribution data is trans-
formed back to the original space before executing the clus-
tering algorithm. A separate request to cluster the reference
distribution may be received from grid control device 130
(i.e., operation 518) or the clustering may be executed auto-
matically as part of the request to create the reference distri-
bution (no operation 518).
Similar to operation 220, in an operation 716, a residual
sum of squares is computed. In an operation 718, the com-
puted residual sum of squares is sent to grid control node 130.
The word “illustrative” is used herein to mean serving as an
example, instance, or illustration. Any aspect or design
described herein as “illustrative” is not necessarily to be con-
strued as preferred or advantageous over other aspects or
designs. Further, for the purposes of this disclosure and unless
otherwise specified, “a” or “an” means “one or more”. Still
further, using “and” or “or” is intended to include “and/or”
unless specifically indicated otherwise. The illustrative
embodiments may be implemented as a method, apparatus, or
article of manufacture using standard programming and/or
engineering techniques to produce software, firmware, hard-
ware, or any combination thereof to control a computer to
implement the disclosed embodiments.
The foregoing description of illustrative embodiments of
the disclosed subject matter has been presented for purposes
of illustration and of description. It is not intended to be
exhaustive or to limit the disclosed subject matter to the
precise form disclosed, and modifications and variations are
possible in light of the above teachings or may be acquired
from practice of the disclosed subject matter. The embodi-
ments were chosen and described in order to explain the
principles of the disclosed subject matter and as practical
applications of the disclosed subject matter to enable one
skilled in the art to utilize the disclosed subject matter in
various embodiments and with various modifications as
suited to the particular use contemplated.
What is claimed is:
1. A non-transitory computer-readable medium having
stored thereon computer-readable instructions that when
executed by a computing device cause the computing device
to:
receive data to cluster;
define a number of clusters to create;
(a) determine centroid locations for the defined number of
clusters using a clustering algorithm and the received
data to define clusters;
(b) define boundaries for each of the defined clusters by
determining an eigenvector and an eigenvalue for each
dimension of each cluster of the defined clusters using
principal components analysis;

determining a length for each dimension of each cluster
as a proportion of the determined eigenvalue for the
respective dimension; and

defining the boundaries for each cluster of the defined
clusters as a box with a center of the box as the
determined centroid location of the respective cluster,
a first boundary point for each dimension defined as
the center plus the determined length of the respective
dimension aligned with the determined eigenvector of
the respective dimension, and a second boundary
point for each dimension defined as the center minus
the determined length of the respective dimension
aligned with the eigenvector of the respective dimen-
sion;
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(c) create a reference distribution that includes a plurality
of data points, wherein the plurality of data points are
within the defined boundary of at least one cluster of the
defined clusters;

(d) determine second centroid locations for the defined
number of clusters using the clustering algorithm and
the created reference distribution to define second clus-
ters;

(e) compute a gap statistic for the defined number of clus-
ters based on a comparison between a first residual sum
of squares computed for the defined clusters and a sec-
ond residual sum of squares computed for the defined
second clusters;

(f) repeat (a) to (e) with a next number of clusters to create
as the defined number of clusters; and

(g) determine an estimated best number of clusters for the
received data by comparing the gap statistic computed
for each iteration of (e).

2. The computer-readable medium of claim 1, wherein the

gap statistic for the defined number of clusters is computed
using gap(k)=log (W, *)-log(W,), where
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is the first residual sum of squares computed for the defined
clusters, and
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is the second residual sum of squares computed for the
defined second clusters, where k is the defined number of
clusters, n, is the number of data points in cluster j of the
defined clusters, x,; is the ith data point in cluster j of the
defined clusters, ¢, is the centroid location of cluster j of the
defined clusters, n,* is the number of data points in cluster j of
the defined second clusters, x, * is the ith data point in cluster
jofthe defined second clusters, and ¢, * is the centroid location
of cluster j of the defined second clusters.

3. The computer-readable medium of claim 2, wherein (c)
and (d) are repeated a plurality of times and wherein
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where B is a number of the plurality of times.

4. The computer-readable medium of claim 2, wherein n,*
is selected based on n, for cluster j.

5. The computer-readable medium of claim 1, wherein the
clustering algorithm is a k-means algorithm.

6. The computer-readable medium of claim 1, wherein the
clustering algorithm is a Ward’s minimum-variance algo-
rithm.

7. The computer-readable medium of claim 1, wherein the
number of clusters to create is defined as a minimum number
of clusters in a range of numbers of clusters to evaluate.

8. The computer-readable medium of claim 7, wherein the
next number of clusters is defined in (f) by incrementing the
defined number of clusters for each iteration of (f).
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9. The computer-readable medium of claim 8, wherein (f)
is repeated until the next number of clusters is greater than a
maximum number of clusters in the range of numbers of
clusters to evaluate.

10. The computer-readable medium of claim 1, wherein the
plurality of data points are created from a uniform distribution
defined within the defined boundary of at least one cluster of
the defined clusters.

11. The computer-readable medium of claim 1, wherein the
proportion of the determined eigenvalue for the respective
dimension is between 0.75 and 1.0.

12. The computer-readable medium of claim 1, wherein the
estimated best number of clusters is determined as the defined
number of clusters associated with a maximum value of the
computed gap statistic.

13. The computer-readable medium of claim 1, wherein the
estimated best number of clusters is determined as the defined
number of clusters associated with a first local maxima value
of'the computed gap statistic.

14. The computer-readable medium of claim 1, wherein the
computer-readable instructions further cause the computing
device to:

after (d) and before (f), compute a standard deviation of the

second residual sum of squares; and

determine an error gap as a difference between the com-

puted gap statistic and the computed standard deviation,
wherein the estimated best number of clusters is deter-
mined as the defined number of clusters associated with
a minimum defined number of clusters for which the
computed gap statistic for that cluster is greater than the
determined error gap of a subsequent cluster.

15. The computer-readable medium of claim 1, wherein the
computer-readable instructions further cause the computing
device to:

after (d) and before (1),

compute a standard deviation of the second residual sum of

squares; and

determine an error gap as a difference between the com-

puted gap statistic and the computed standard deviation;
and

after (d) and before (g),

determine a first number of clusters as the defined number

of clusters associated with a first local maxima value of
the computed gap statistic; and

determine a second number of clusters as the defined num-

ber of clusters associated with a maximum value of the
computed gap statistic;

determine a third number of clusters as the defined number

of clusters associated with a minimum defined number
of clusters for which the computed gap statistic for that
cluster is greater than the determined error gap of a
subsequent cluster,

wherein the estimated best number of clusters is deter-

mined as the determined first number of clusters unless
the determined second number of clusters equals the
determined third number of clusters in which case the
estimated best number of clusters is determined as the
determined second number of clusters.

16. A computing device comprising:

a processor; and

a non-transitory computer-readable medium operably

coupled to the processor, the computer-readable
medium having computer-readable instructions stored
thereon that, when executed by the processor, cause the
computing device to

receive data to cluster;

define a number of clusters to create;
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(a) determine centroid locations for the defined number of
clusters using a clustering algorithm and the received
data to define clusters;
(b) define boundaries for each of the defined clusters by
determining an eigenvector and an eigenvalue for each
dimension of each cluster of the defined clusters using
principal components analysis;
determining a length for each dimension of each cluster
as a proportion of the determined eigenvalue for the
respective dimension; and
defining the boundaries for each cluster of the defined
clusters as a box with a center of the box as the
determined centroid location of the respective cluster,
a first boundary point for each dimension defined as
the center plus the determined length of the respective
dimension aligned with the determined eigenvector of
the respective dimension, and a second boundary
point for each dimension defined as the center minus
the determined length of the respective dimension
aligned with the eigenvector of the respective dimen-
sion;
(c) create a reference distribution that includes a plurality
of data points, wherein the plurality of data points are
within the defined boundary of at least one cluster of the
defined clusters;
(d) determine second centroid locations for the defined
number of clusters using the clustering algorithm and
the created reference distribution to define second clus-
ters;
(e) compute a gap statistic for the defined number of clus-
ters based on a comparison between a first residual sum
of squares computed for the defined clusters and a sec-
ond residual sum of squares computed for the defined
second clusters;
(f) repeat (a) to (e) with a next number of clusters to create
as the defined number of clusters; and
(g) determine a cluster number for the received data by
comparing the gap statistic computed for each iteration
of (e).
17. The computing device of claim 16, wherein the plural-
ity of data points are created from a uniform distribution
defined within the defined boundary of at least one cluster of
the defined clusters.
18. The computing device of claim 16, wherein the propor-
tion of the determined eigenvalue for the respective dimen-
sion is between 0.75 and 1.0.
19. A system comprising:
a first computing device comprising
a first processor; and
a first computer-readable medium operably coupled to
the first processor, the first computer-readable
medium having first computer-readable instructions
stored thereon that, when executed by the first proces-
sor, cause the first computing device to:
receive data to cluster;
define a number of clusters to create;
(a) determine centroid locations for the defined num-
ber of clusters using a clustering algorithm and the
received data to define clusters;
(b) define boundaries for each of the defined clusters
by
determining an eigenvector and an eigenvalue for
each dimension of each cluster of the defined
clusters using principal components analysis;

determining a length for each dimension of each
cluster as a proportion of the determined eigen-
value for the respective dimension; and
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defining the boundaries for each cluster of the
defined clusters as a box with a center of the box
as the determined centroid location of the
respective cluster, a first boundary point for each
dimension defined as the center plus the deter-
mined length of the respective dimension
aligned with the determined eigenvector of the
respective dimension, and a second boundary
point for each dimension defined as the center
minus the determined length of the respective
dimension aligned with the eigenvector of the
respective dimension;

(c) send a request to a second computing device to
define second clusters based on the defined bound-
aries;

(d) receive a first residual sum of squares computed
for the defined second clusters;

(e) compute a gap statistic for the defined number of
clusters based on a comparison between a second
residual sum of squares computed for the defined
clusters and the first residual sum of squares com-
puted for the defined second clusters;

(D) repeat (a) to (e) with a next number of clusters to
create as the defined number of clusters; and

(g) determine a cluster number for the received data
by comparing the gap statistic computed for each
iteration of (e); and

the second computing device comprising

a second processor; and

a second computer-readable medium operably coupled
to the second processor, the second computer-read-
able medium having second computer-readable
instructions stored thereon that, when executed by the
second processor, cause the second computing device
to:

receive a request from the first computing device to
define second clusters based on the defined bound-
aries;

create a reference distribution that includes a plurality
of data points, wherein the plurality of data points
are within the defined boundary of at least one
cluster of the defined clusters;

determine second centroid locations for the defined
number of clusters using the clustering algorithm
and the created reference distribution to define sec-
ond clusters;

compute the first residual sum of squares for the
defined second clusters; and

send the computed first residual sum of squares to the
first computing device.

20. The system of claim 19, wherein the first computing
device is a grid control device and the second computing
device is a grid node of a plurality of grid nodes controlled by
the grid control device.

21. The system of claim 19, wherein the plurality of data
points are created from a uniform distribution defined within
the defined boundary of at least one cluster of the defined
clusters.

22. The system of claim 19, wherein the proportion of the
determined eigenvalue for the respective dimension is
between 0.75 and 1.0.

23. A method of determining a number of clusters for a
dataset, the method comprising:

receiving data to cluster;

defining a number of clusters to create;
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(a) determining centroid locations for the defined number
of clusters using a clustering algorithm and the received
data to define clusters;
(b) defining boundaries for each of the defined clusters by
determining an eigenvector and an eigenvalue for each
dimension of each cluster of the defined clusters using
principal components analysis;

determining a length for each dimension of each cluster
as a proportion of the determined eigenvalue for the
respective dimension; and

defining the boundaries for each cluster of the defined
clusters as a box with a center of the box as the
determined centroid location of the respective cluster,
a first boundary point for each dimension defined as
the center plus the determined length of the respective
dimension aligned with the determined eigenvector of
the respective dimension, and a second boundary
point for each dimension defined as the center minus
the determined length of the respective dimension
aligned with the eigenvector of the respective dimen-
sion;

(c) creating a reference distribution that includes a plurality
of data points, wherein the plurality of data points are
within the defined boundary of at least one cluster of the
defined clusters;
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(d) determining second centroid locations for the defined
number of clusters using the clustering algorithm and
the created reference distribution to define second clus-
ters;

(e) computing, by a computing device, a gap statistic for
the defined number of clusters based on a comparison
between a first residual sum of squares computed for the
defined clusters and a second residual sum of squares
computed for the defined second clusters;

() repeating, by the computing device, (a) to (¢) with anext
number of clusters to create as the defined number of
clusters; and

(g) determining, by the computing device, an estimated
best number of clusters for the received data by compar-
ing the gap statistic computed for each iteration of (e).

24. The method of claim 23, wherein the plurality of data

points are created from a uniform distribution defined within
the defined boundary of at least one cluster of the defined

20 clusters.

25. The method of claim 23, wherein the proportion of the

determined eigenvalue for the respective dimension is
between 0.75 and 1.0.
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